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Abstract—Stencil computations form the basis for computer
simulations across almost every field of science, such as com-
putational fluid dynamics, data mining, and image processing.
Their mostly regular data access patterns potentially enable
them to take advantage of the high computation and data
bandwidth of GPUs, but only if data buffering and other issues
are handled properly.

Finding a good code generation presents a number of
challenges, one of which is the best way to make use of memory.
GPUs have three types of on-chip storage: registers, shared
memory, and read-only cache. The choice of type of storage
and how it’s used, a buffering strategy, for each stencil array
(grid function, (GF)) not only requires a good understanding
of its stencil pattern, but also the efficiency of each type of
storage for the GF, to avoid squandering storage that would be
more beneficial to another GF. Our code-generation framework
supports five buffering strategies. For a stencil computation
with N GFs, the total number of possible assignments is 5N .
Large, complex stencil kernels may consist of dozens of GFs,
resulting in significant search overhead.

In this work, we present an analytic performance model for
stencil computations on GPUs, and study the behavior of read-
only cache and L2 cache. Next, we propose an efficiency-based
assignment algorithm, which operates by scoring a change in
buffering strategy for a GF using a combination of (a) the
predicted execution time and (b) on-chip storage usage. By
using this scoring an assignment for N GFs and b strategy
types can be determined in (b− 1)N(N + 1)/2 steps. Results
show that the performance model has good accuracy and that
the assignment strategy is highly efficient.

I. INTRODUCTION

Stencil computations’ mostly regular data access patterns
potentially enable them to take advantage of the high com-
putation and data bandwidth of GPUs, but only if data
buffering and other issues are handled properly. There have
been a number of stencil frameworks [1], [2] designed to
make it easier for programmers to write stencil codes and
to generate good code, and in some cases that is done using
auto-generation and autotuning of code. These frameworks
evaluate proposed configurations using a performance model
or a trial run. The latter method is time consuming, limiting
configuration space exploration, especially when dynamic
compilation is employed. But the configuration space that

must be searched for multi-level tuning can slow even
model-driven autotuning techniques.

Assignment of a buffering strategy is challenging due to
the multiple storage options available on some accelerators,
and due to the fact that all must be used for bandwidth-
limited code in order to realize the device’s potential. With
5 possible strategies and 20 GFs, an exhaustive search would
have to explore up to 520 ≈ 9.54 × 1013 possibilities. The
proposed efficiency-based assignment algorithm reduces this
from bN to (b− 1)N(N +1)/2 evaluations, where N is the
number of GFs and b is the number of buffering strategies.

To cull the search space, we need to understand the
implications of buffering strategy choice on the efficiency
of GPU execution. The use of registers and shared memory
on the one hand, can reduce off-chip memory traffic while,
on the other hand, may limit thread-level parallelism and that
will result in poor latency hiding. Moreover, it is important
to have an accurate prediction of the cache behavior. For
example, is it wise to have more than one GF access the
read-only cache? We are unable to give a good answer unless
we can accurately predict the cache behavior, which is very
challenging.

In this work, we firstly present an analytic performance
model for stencil computations on GPUs. In addition, we
design an efficiency-based assignment algorithm, in which
an efficiency function is defined to select a proposal. A
proposal is a change in buffering strategy of one GF. The
efficiency function balances the performance improvement
of the change with its resource consumption.

The main contributions of this work are:
• We present an accurate performance model which con-

siders reduced data traffic at off-chip memory through
buffering, as well as the side effect of low occupancy.
More importantly, the behavior of read-only cache and
L2 cache is also studied.

• We design an efficiency-based assignment algorithm
which can find suboptimal solution in O(N2) time,
instead of exponentially increasing design space with
N , where N is the number of GFs in a kernel.

• The algorithm is evaluated using a micro-benchmark



and a number of real stencil applications.
The remainder of this paper is organized as follows. Re-

lated work, preliminaries, and background appear in Sec. II,
III, and IV respectively. The performance model is presented
in Sec. V, followed by the efficiency-based assignment in
Sec. VI. Sec. VII and VIII discuss experimental methodol-
ogy and results, and conclusions appear in Sec. IX.

II. RELATED WORK

A. Performance Modeling

A reliable performance model is the foundation of model-
driven autotuning technique. Hong et al. [3] propose an
analytic GPU performance model, but their model is not
suitable for autotuning stencil codes. Meng et al. [1] estab-
lish a performance model to autotune ghost zone for stencil
computations on GPUs. However, since their main goal is
the ghost zone study there are a number of important aspects
are not considered. For example, their model only considers
buffering with shared memory. Hu, et al. [4] present an ana-
lytic performance model for stencil computations on GPUs.
Two buffering strategies: buffering with shared memory and
buffering with shared memory and registers, are considered.
Experiments show good prediction accuracy, but read-only
cache strategy is not studied. Moreover, buffering strategies
of all GFs in a kernel have to be identical.

B. Tradeoff of Buffering Strategies

Maruyama and Aoki [5] study a series of buffering
methods for stencil computations, and they found shared
memory and registers are very helpful, and read-only cache
can noticeably increase performance as well. Yang et al.
[6] found buffering too many GFs in shared memory would
limit concurrency and degrade performance as well. Hayes
and Zhang [7] observed that on-chip storage of GPUs should
be utilized in a balance way. For example, it is necessary
to offload the register pressure to shared memory when
registers are the bottleneck for low concurrency. Gebhart et
al. [8] proposed a reconfigurable on-chip storage design for
GPUs. That is the relative size of registers, shared memory,
and cache can be reconfigured based on fact that different
codes favor different on-chip storage assignments.

III. PRELIMINARIES

The following is a brief description of the GPU used
here, an NVIDIA Tesla K20xm. GPU execution starts with
the launch of a kernel which executes as g blocks each
consisting of b threads. Blocks are assigned to SMs, there
are 14 in a K20xm. The block size, b, is limited by the
resources available on an SM and the demands of the kernel.
The resources include shared memory, 48 kiB, and registers,
216. An SM also has a 48 kiB opt-in read-only (RO) cache.
The small size and large latency of the L2 cache make it
unsuitable for working set storage. (See Table IIIa for values
of additional device parameters.) The maximum block size is

1024 threads. The latency of arithmetic instructions is high
(by CPU standards), on the order of 11 cycles, and so a
large number of threads is needed to hide this latency and
so avoid underutilization. That’s a concern for kernels with
high per-thread shared memory or register demands, since
they are limited to using fewer threads.

The issue rate varies by instruction, for double precision
floating-point (FP) operations (including MADD operations)
it is 64 instructions per cycle. At 732MHz that works out
to 1312GFLOPS peak. Off-chip bandwidth is 250GB/s,
which works out to computation to communication ratio of
42 (operations per element).

IV. BACKGROUND

In preparation for code generation Chemora[9] generates
calculations from a user-provided PDE system description.
PDE dB

dt = ∂A
∂x2 would be written as D_t B = D_xx

A. A calculation is essentially the body of a loop nest
iterating over a grid space of grid points. At run time the
Chemora code generator generates a CUDA kernel from
these calculations. The code generator decides how to assign
grid points to threads and how best to handle data reuse. The
above equation translates into something like the loop below:
for (i=imin to imax, j=jmin to jmax, k=kmin to kmax)
RHS_B[i,j,k]=(A[i,j-1,k]+2A[i,j,k]+A[i,j+1,k])/dxsq;

A and RHS_B are 3D arrays called grid functions (GFs) and
are indexed using loop indices and constant offsets. A stencil
is the set of offsets for a particular GF. Reuse occurs in A
due to the offsets, most elements being accessed three times.
The example above consists of just a single GF write, but
Chemora calculations can consist of any number of GF offset
loads and stores and can use any number of intermediate
variables and loop-invariant values.

The experienced reader may have recognized that for the
loop above a good configuration might assign one block
to each value of k, assign one thread in a block to each
value of i (maximizing GPU memory request usage), and
have threads iterate over j (so that values loaded in one
iteration can be used in the next). The configuration might
be modified if the loop over i is too short (multiple k’s per
block) or if it is too long (split i between blocks).

Chemora uses its performance model and efficiency-based
algorithm to make such decisions. The goal is to choose a
block configuration for the kernel and to choose a buffering
strategy for each GF making use of any combination of
available storage. A block configuration, denoted CBlock, is
specified by four values: an iteration direction e ∈ {y, z}, the
dimensions of the grid space plane covered by the block’s
threads, tx and tf , and the number of grid points processed
per thread along the e-axis, tee, where f denotes the axis
orthogonal to x-axis and e-axis.

An assignment, CAssignment = (u, r,b,p, c), is a map-
ping of GFs to strategies. Each set u, r, b, p, and c, repre-
sents a different strategy. The grid functions are partitioned



Parameter Description
CBlock Block configuration, (e, tx, tf , tee).
e Iteration axis, e ∈ {y, z}. Also, f ≡ {y, z} − {e}.
tx Num. of threads per block along x axis.
tf Num. of threads per block along f axis.
tee Number of iterations.

CAssignment Buffering strategy assignments, (u, r,b,p, c)
u Set of un-buffered GFs.
r Set of GFs buffered only with registers.
b Set of GFs buffered only with shared memory.
p Set of GFs buffered with registers and shared memory.
c Set of GFs buffered in read-only cache.

Table I: Parameters for code generation and run.

among them. Table I lists the block configuration parameters
and buffering strategies.

A. Strategy u : Unbuffered

In the unbuffered strategy each offset load is realized by
a global load instruction. Latency will be on the order of
189 cycles (L2 hit) to 300 cycles (L2 miss) and L2 misses
consume off-chip bandwidth. Although the performance of
the un-buffered strategy is relatively low, it uses no shared
memory and the fewest registers, saving these resources for
more performance-sensitive GFs.

B. Strategy r: Register

In the register strategy registers carry loaded values from
one iteration to the next. It is applicable when the offset
axis matches the iteration axis. This is the case in the
example above if threads iterate in the j direction. Since
there is less than one instruction per offset load, the strategy
uses the least instruction bandwidth but consumes the most
registers. For example, consider references to a GF at offsets
A[0,1,0] and A[0,0,0] when iterating in the +j direc-
tion. A load would be generated for reference A[0,1,0]
in one iteration and the loaded value would also be used for
A[0,0,0] in the next iteration, eliminating the need for
any instruction to load the value for the second reference
(in all but the first iteration). However the register holding
the value cannot be used for other purposes. Overuse of
registers lowers occupancy and even result in register spills,
causing significant performance degradation.

C. Strategy b: Shared Only

In the shared only strategy, shared memory is used to hold
GF elements. The amount of shared memory per GF is based
on the volume of the grid points assigned to threads extended
by the stencil offsets. The strategy also requires instructions
to load shared memory and barriers to isolate shared memory
updates. Because data buffered in shared memory can be
accessed by all threads of a block, this buffering strategy can
be applied to GFs with all types of stencil patterns. However,
this strategy may require a large amount of shared memory,
and so may result in a great drop in occupancy when it is
applied.

D. Strategy p: Plus

The plus strategy, referred to elsewhere as 2.5D tiling, is
a hybrid of the shared-only and register strategies. Like the
register strategy, a global load is performed for the GF access
having offset (0, oe, 0) ∈ S with the largest oe, and the value
is kept in a register for use by offsets (0, d, 0) ∈ S : d < oe,
where S is the stencil for the GF. The value is copied
to shared memory for use by offsets (ox, 0, of ) ∈ S.
Global loads are used for all other offsets, such as (1, 1, 1).
For example, suppose that iteration is along the y axis
and the stencil for GF A is A[0,1,0], A[0,0,0],
A[0,-1,0], A[1,1,0], A[1,0,1]. A global load
will be used for A[0,1,0] and the loaded value will be
used for A[0,0,0] and A[0,-1,0], shared memory will
be used for A[1,0,1] and a global load for A[1,1,0].
The amount of shared memory is the grid space occupied by
the threads extended by the stencil only in the axis normal
to iteration, a significant savings.

E. Strategy c: ROC (Read-Only Cache)

The ROC strategy uses read-only cache instructions for
offset loads. This strategy consumes ROC space, but due
to peculiarities of the NVIDIA Kepler instruction set (lack
of immediate offsets), additional registers and arithmetic
instructions are also used. As with any cache, performance
depends upon several uncontrollable factors such as compiler
instruction scheduling by the PTX compiler, warp execution
ordering, and cache replacement.

V. PERFORMANCE MODEL

The efficiency-based assignment algorithm relies upon a
performance model that estimates the execution time of a
calculation for some block configuration and assignment
running on some GPU. This model accounts not just for
the data volume differences between the different buffering
strategies, but also for any exposed latencies in the instruc-
tions needed to implement them.

A. Calculation Characterization

A calculation is characterized by a stencil for each input
grid function, and three additional parameters: the number
of FP operations, the number of GF stores, and the number
of intermediate registers used. See Table IIa.

The stencil (not shown) for a GF is used to compute
components of its stencil bounding box, see the top half
of Table IIb. These are mainly used to calculate on-chip
memory usage. For example, (tx + sx)(te + se)(tf + sf )
elements of storage would be used for a GF under the
buffered only with shared memory strategy.

Reuse factors, shown in the lower-half of the table, are
computed from a GF’s stencil once a block configuration
and an assignment are chosen. These indicate the number
of memory accesses performed per grid point for different
axis alignments. For example, re is the number of accesses



Parameter Description
ninter
reg Number of registers used to store intermediate values
nst
gf Number of GF stores
nfp Number of FP operations it takes to calculate a grid point

(a) Calculation parameters (except GF loads).
Parameter Description

sx sx = sxn + sxp
sxn Magnitude of minimum x offset.
sxp Magnitude of maximum x offset.
sf Difference between maximum and minimum f offset.
se Difference between maximum and minimum e offset.
r Re-use factor for all offsets. r = rx + rf + re + ro
rx Number of offsets (ox, oe, of ) : ox 6= 0, oe = of = 0.
rf Number of offsets (ox, oe, of ) : oe = 0, of 6= 0.
re Number of offsets (ox, oe, of ) : oe 6= 0, ox = of = 0.
ro Number of offsets (ox, oe, of ) : oe 6= 0, |ox|+ |of | 6= 0.

(b) GF load parameters derived from its offsets.

Table II: Model input.

with offsets along the e-axis. These are used to estimate hit
ratios in the read-only and L2 caches.

B. GPU Characterization

Table IIIa shows hardware-related parameters and their
values for NVIDIA GPU K20xm. Parameters Kreg, Ksmem,
and Kroc are obtained from the product literature [10]. The
other parameters are measured using micro-benchmarks. De-
tails on micro-benchmarks will not be discussed in this paper
due to limited space. Table IIIb lists parameters that are
hard to obtain but important to performance modeling. These
parameters are determined by hardware device, compiler,
and stencil applications. For example, λg is proportional to
the number of registers allocated for data loaded from global
memory. It could be as small as one when only one register is
allocated. Therefore, for these parameters we estimate their
values to the best of our knowledge.

Parameter Description Value
WL2 Measured L2 cache bandwidth? 3.96 (324.5 GB/s)
WGM Measured global memory bandwidth? 1.92 (157.5 GB/s)
Lg Global memory latency (cycles) 305
LL2 L2 cache latency (cycles) 189
Ls Shared memory latency (cycles) 32
Lb Barrier latency (cycles) 483
Lc Read-only cache latency (cycles) 108
Lf FP operation latency (cycles) 10
LSc Line size of read-only cache (elts) 16
LSL2 Line size of L2 cache (elts) 4
Kreg Register file capacity (elts/SM) 32768
Ksmem Shared memory capacity (elts/SM) 6144 (48 kiB)
Kroc Read-only cache capacity (elts/SM) 6144 (48 kiB)

(a) Hardware parameters. ?unit: elements (elts) / cycle / SM.
Parameter Description Value

λg Parallel factor for global memory access 3
λs Parallel factor for shared memory access 3
λb Parallel factor for barrier synchronization overhead 3
λc Parallel factor for read-only cache access 3
λf Parallel factor for FP operation 3
Lo Overhead in cycle per iteration per thread block 100

(b) Software parameters.

Table III: Parameters used for modeling on GPU K20xm

C. Execution Time Prediction
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(a) Volume of data traffic at the L2 cache
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(b) Volume of data traffic at global memory
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(c) Operation latency
Mreg txtf(n

inter
reg + |u|+ |b|+ |c|+

∑
i∈r∪p (1 + sei )) ≤ Kreg

Msmem
∑

i∈b(sxi + tx)(sfi + tf)(sei + 1) +
∑

i∈p(sxi + tx)(sfi + tf)

≤ Ksmem

(d) Resource Usage and Constraints

Table IV: Equations used for performance modeling

The execution time model considers three factors, kernel
launch overhead, Tlaunch, data traffic, Tdata, and exposed
latency, Tlat. Exposed latency is the execution time when
accounting for operation latency (including arithmetic and
memory accesses) but ignoring memory congestion and
issue bandwidth. It is possible in some situations to schedule
instructions such that execution time is determined only
by the larger of the two latter factors: Ttot = Tlaunch +
max {Tdata, Tlat}.

When loads are bunched together and near consuming
instructions data bandwidth time cannot be hidden, in the
worst case Ttot = Tlaunch+Tdata+Tlat. The more common



intermediate cases are modeled with:

Ttot = Tlaunch+βmax (Tdata, Tlat)+(1−β) (Tdata + Tlat) /2,
(1)

where β ∈ [0, 1] is the degree of non-interference of the
two factors. An empirically determined value of .8 works
well for the codes studied. Assuming the bottleneck of data
traffic is either L2 cache or global memory, we have:

Tdata = max
(
DL2

total/WL2, D
GM
total/WGM

)
(2)

where DL2
total denotes the total volume data loaded from and

stored to the L2 cache, while WL2 denotes the realistically
achievable bandwidth. The definitions of DGM

total and WGM

are similar. Note the unit of data volume is the number of
data elements it takes to compute a grid point.

1) Traffic between the L2 Cache and SM: The total
volume of data traffic between the L2 and SM cache consists
of six parts as shown in Table IVa. These are shown
using round-to-line operators dae〈C〉 ≡ da/LSCeLSC and
dae〈+C〉 ≡

⌈
a/LSC + 1

2

⌉
LSC. The first five parts: DL2

u ,
DL2

r , DL2
b , DL2

p , and DL2
c are for L2 cache reads from GFs

with different buffering strategies. The last part αnstgf is for
L2 cache writes, where α is defined for the overhead of
possible unaligned accesses.

For the unbuffered case DL2
u , all reads are directed to the

L2 cache, while the buffered cases have fewer reads. Take
DL2

r , DL2
b , and DL2

p for example. The reads are for loading
data to on-chip memory in an iteration are independent of a
GF’s data reuse ri. Note for DL2

p , only data along iteration
direction E, and the one on XF plane that is orthogonal to
E can be buffered as discussed in Section IV-D. Therefore
irregular points (i.e. ro), if they exist, are left unbuffered.

Equation DL2
c needs care as it depends on the read-only

cache’s behavior. It consists of two parts: Mroc for cold
misses and the others for capacity misses. Mroc is equal
to both the volume of data brought to the cache for the
first time, and the minimum cache size to eliminate capacity
misses in the equation for RRO

SND in Table IVa. Note here we
assume data reuse on the read-only cache exists only along
the X direction. The Supply and Demand Ratio of the read-
only cache, RRO

SND, is used to model the impact of capacity
misses which exist when RRO

SND is smaller than one.
2) Volume of traffic at global memory: Similarly, Ta-

ble IVb lists the equations for computing the total volume of
data traffic at global memory. For DGM

r , DGM
b , and DGM

p ,
the data has no reuse so the volume of global memory is
equal to the volume of L2 cache.

Equation DGM
u and DGM

c needs care as the L2 cache is
shown to be helpful in reducing traffic to global memory for
data with reuse. Similarly RL2

SND, the Supply and Demand
Ratio of the L2 cache, is used to model the impact of
capacity misses. ML2

u , ML2
r , ML2

b&p, and ML2
c denote the

minimum L2 cache size that is required to avoid capacity
misses by GFs buffered in different strategies. NSM denotes
threads running on all SMs are sharing the same L2 cache.

3) Analysis of exposed latency: To quantify the impact
of thread-level parallelism on execution time, we propose
a model in Table IVc where exposed latency is high when
thread-level parallelism (i.e. smaller txtf ) is low.

In addition to parallelism, various operation latencies have
impact on Tlat. The latencies we modeled include global
memory accesses, L2 cache accesses, shared memory ac-
cesses, barrier operations, read-only cache accesses, floating
point operations, and a thread block’s time overhead Lm per
iteration. The parameter λg represents the number of global
memory load and store instructions that can be issued in
parallel. Correspondingly, NgLg denotes the exposed latency
from global memory accesses. The definitions for the other
N ’s, L’s, and λ’s are similar.

D. On-Chip Memory Usage Affects Parallelism
Table IVd shows how usage of registers and shared

memory affects parallelism. We can use the two inequalities
in Table IVd to solve for the variables tf , given a value for
tx. This gives us the block configuration CBlock.

VI. EFFICIENCY-BASED ASSIGNMENT

Algorithm 1 Efficiency-based on-chip memory allocation

1: Gather metadata of n GFs
2: Initialize CAssignment: u = {1, 2, ..., n} and r = b =

p = c = {}
3: next = true
4: while next do
5: mrbp = mc = NULL
6: for (i ∈ u) & (ri > 0) do
7: for every {r,b,p, c} as target set t do
8: //Propose a move m: move i from u to t
9: if m is invalid then

10: continue
11: end if
12: if t is not c then
13: mrbp = m if E(m) > E(mrbp)
14: else
15: mc = m if E(m) > E(mc)
16: end if
17: end for
18: end for
19: if min(4T (mrbp),4T (mc)) > 0 then
20: next = false
21: else
22: if 4T (mrbp) < 4T (mc) then
23: Accept mrbp

24: else
25: Accept mc

26: end if
27: end if
28: end while

Let C = {u, r,b,p, c} be some incomplete assignment
and let m denote a proposed reassignment of some gf ∈ u.



At the heart of the efficiency-based assignment algorithm
is an efficiency function, E(C,m) ∈ R, which gives the
efficiency (desirability) of assignment m given an incomplete
assignment C. The efficiency function is evaluated for all
moves from an incomplete assignment, the best of which is
used to generate a new (possibly) incomplete assignment.
The efficiency function has been designed to avoid back-
tracking, so that an entire assignment can be computed in
(b−1)N(N+1)/2 steps where b and N denote the number
of buffering strategies and GFs separately, as compared to
bN steps for an exhaustive search.

Algorithm 1 shows how on-chip memory is allocated
to improve performance step-by-step in a memory-efficient
way. At the beginning, all GFs are un-buffered. Line6-7:
shows all possible moves m to buffer an un-buffered GF in
one of four different ways. Note that GFs must have data
reuse (i.e. ri > 0) to be buffered. Line9-11: a proposed move
m could be invalid when a buffering strategy does not apply
to a GF due to its stencil pattern.

The performance improvement of a move m is defined by
4T , which denotes the change in execution time. We define
the efficiency function E(m), Eq 3, to identify steps that
reduce the execution time, but at the same time to penalize
changes that take too much memory and reward changes that
reduce memory. Buffering a GF may reduce memory since
it may reduce the number of threads while, for example,
the number of used registers per thread is kept constant.
The variables isreg limited, issmem limited, and isroc limited

are either 1 or 0 and denote whether on-chip memory (in
the form of registers, shared memory, or read-only cache) is
limited or not. For example, isreg limited is 0 if the number
of registers is large enough to buffer all unbuffered GFs at
the same occupancy.

E(m) =− 4T (m) (exp (−isreg limited 4Mreg/Kreg)

+ exp (−issmem limited 4Msmem/Ksmem)

+ exp (−isroc limited 4Mroc/Kroc))
(3)

L12-16: mrbp is the most efficient move for strategies that
buffer in registers, shared memory, and shared memory and
registers, while mc is the most efficient strategy for buffering
in read-only cache. The reason we have two types of most
efficient move is Mroc denotes the minimum cache size to
avoid a capacity miss. Unlike Mreg ≤ Kreg and Msmem ≤
Ksmem, Mroc could be greater than Kroc.

L19-21: the algorithm terminates when the execution time
cannot be reduced. L22-26: accept mrbp or mc depending on
which one results in greater execution time drop.

VII. EXPERIMENTAL METHODOLOGY

The efficiency-based assignment algorithm was evaluated
in a set of runs on a system consisting of an Intel Xeon E5-
2670 CPU and an NVIDIA Tesla K20xm GPU. The GPU

Kernel name Input GFs nst
gf nfp Problem Size

Micro-bench 10 [10] 1 180 256×256×256
Fluam RK3 1 5 [5] 4 395 256×256×256
Fluam RK3 2 4 [1] 4 33 256×256×256

Scale 1 5 [2] 3 0 32×32×1280
Scale 2 9 [1] 8 55 32×32×1280

BSSN Advect 24 [24] 25 3160 100×100×100
BSSN Dalpha 1 15 [15] 26 401 100×100×100

Table V: Stencil Application Characteristics. Number of GF
with reuse shown in brackets. See Table IIa for definition of
nstgf and nfp. Problem size excludes boundary.

code was prepared with CUDA version 6.0.1. In addition, a
micro-benchmark and a number of real-world applications
are used for evaluation. Table V lists their characteristics.

The micro-benchmark we designed is a 3D stencil com-
putation with one output GF B and ten input GFs An,
n ∈ {0, 1, . . . , 9}, as shown in Eq 4. cn[m] with m ∈
{0, 1, . . . , 8} are constants with different values. The stencil
pattern of GF An is the same as that of a GF in a real-world
application Fluam. We designed such micro-benchmark for
three reasons. First, we expect it to be representative of
a class of real applications. Second, all input GFs have
the same stencil pattern making it easy to demonstrate the
performance model. Third, the benchmark has enough GFs
so that an efficiency-based assignment algorithm is needed
to search the design space.

B[i, j, k]+ =

9∑
n=0

(cn[0]×An[n, i, j, k]

+ cn[1]×An[i− 1, j, k] + cn[2]×An[i + 1, j, k]

+ cn[3]×An[i, j− 1, k] + cn[4]×An[i, j + 1, k]

+ cn[5]×An[i, j, k− 1] + cn[6]×An[i, j, k + 1]

+cn[7]×An[i− 1, j + 1, k] + cn[8]×An[i− 1, j, k + 1])
(4)

Fluam [11] is a GPU application (in CUDA C) devel-
oped for fluctuating hydrodynamics with the finite volume
method. It provides fluid solvers for the compressible and
incompressible Navier-Stokes equations using an Eulerian-
Lagrangian approach. It offers 18 simulation schemes such
as third order Runge-Kutta (RK3), thermo-statistics, and
particle-wall. In this work the default RK3 scheme, which
consists of kernel RK3 1 and RK3 2, is being evaluated.

SCALE-LES is a large-eddy simulation model developed
for weather and climate study. Wahib and Maruyama[12]
manually implemented the model using CUDA Fortran and
OpenACC. The stencil kernels we evaluated (i.e. Scale 1
and Scale 1) are two of the most time-consuming ones.

McLachlan code [13] is a part of Einstein Toolkit, and
BSSN formulations are a set of coupled nonlinear partial
differential equations with 25 GFs. We study Advect and
Dalpha 1 out of BSSN’s 11 calculations because of their
representative stencil patterns and high data reuse.
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Figure 1: Evaluating performance model using a micro-benchmark.

VIII. RESULTS

We first demonstrate the accuracy of the proposed perfor-
mance model, we then demonstrate the effectiveness of the
efficiency-based algorithm running stencil applications.

A. Validation of the Performance Model

Figure 1a shows data transaction at L2 cache and global
memory with different number of GFs being buffered and
in three different ways. It can be seen that the predicted
and measured number of data transactions is close for all
buffering methods, though the predicted values are slightly
smaller in general. This discrepancy is probably because our
model assume GPU hardware and the compiler can avoid
unnecessary data transaction in a very efficient way. An-
other interesting observation is that the L2 cache efficiently
reduces the number of data transactions reaching global
memory.

Figure 1b shows a comparison between the predicted and
measured execution time, and the corresponding thread-level
parallelism. Execution time is shown in cycle per grid point
per SM. We can see that the predicted execution time and
the measured ones match well except when thread-level
parallelism changes. Take buffering strategy using shared
memory for example, noticeable gap exists for 2, 3, 4, and
5 GFs being buffered. This is because as thread-level par-
allelism decreases, operation latency (including arithmetic
and memory accesses) will be worse hidden. However, it
is hard to accurately estimate the degree of latency hidden,
compared with the data transaction.
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Figure 2: Normalized performance of different stencil.

B. Effectiveness of the Efficiency-Based Scheme

The effectiveness of the efficiency-based assignment al-
gorithm was evaluated by running a set of benchmarks
on systems using the efficiency-based scheme, Chemora-
ByEff, and one that chooses based only on performance

Chemora ByPerf. In addition, configurations were run in
which assignment is based on a large search and manual
tuning, Chemora Best, and hand-tuned versions of the code,
Original Code. The run times are plotted in Figure 2,
normalized to Chemora Best.

As we can see, Chemora ByEff is better than Chemora-
ByPerf on two runs, and equal on the others. Chemora-
ByEff has an edge where GFs’ data access patterns within

a kernel vary, where all GF have identical patterns the two
schemes are equal.

For comparison, the performance of the original CUDA
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Figure 3: Case study of the efficiency-based scheme using
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code for Fluam [11] and Scale-les [12] running on the test
system is shown. Chemora outperforms the original code
for a number of reasons, such as dynamic compilation and
efficient memory access and buffering code. These aspects
of Chemora will be reported elsewhere.

Figure 3 shows a case study of the proposed efficiency-
based assignment scheme. Initially, all GFs a0-a9 are un-
buffered. At each step, a GF will be buffered in one of
three ways, depends on their performance improvement or
buffering efficiency. Scheme ByPerf buffers two GFs using
shared memory in the first steps, results in fast drop of
occupancy and no improvement to buffer the 6th GF. In
contrast, scheme ByEff has 7 GFs being buffered at the
end, resulting in minimum predicted execution time.

IX. CONCLUSIONS

In this work, we first propose a performance model
which supports five buffering strategies. Next, we present an
efficiency-based assignment algorithm which can effectively
reduce searching time from O(5N ) to O(N2) where N de-
notes the number of GFs in a kernel. Experiments show good
prediction accuracy. In addition, the performance achieved
by the algorithm is 95.4%, on average, that of the manual
tuned implementation. Future work could be evaluation: a)
on other GPUs; b) with kernel fusion and fission.
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